ON 'LWO NEW TRILOBITES FROM BOWNING.

By John Mitchell, late Prineipal, Technical Culeefe, Newcastle, N.S.W.
(Plates xv.-xvi.)
Dalmantites (Hausmannia) loomesi, n.sp.
(Pl. xı., figs. 1, 2 ; Pl. xvi, figs. 3, 4, 5).
Itensmennies meridienus, Eth. and Mitchell (in part), Proc. Limm. Soc. N. S. Wales, 1895, pp.504-509.

Complete form oval.
Cephalon subsemicircular, smooth. moderately convex, greatest length, $25 \mathrm{~mm} .$, width, 58 mm . between the genal angles.

Glabella subpyriform, very gently tumid, depressed; anterior glabellar furrows wide, shallow, oblique and do not meet medially: second pair slit-like, do not communicate with the axial grooves, nor are they contimons transersely; third pair similar to second pair, hut nearly reach the axial furrows; front glabellar lobe subellipsoidal, auterior pair subtriangular, second and third pairs more or less rectangular, the latter pair being rounded at the postero-lateral angles by the neck furrow; neek furrow deep and narrow towards the axial grooves, but faint medially, and has an anterior direction centrally and basally; its lateral extensions are wide and fairly deep, especially along their anterior boundary, thus giving to the portions of the fixed cheeks abutting them prominent faces; neek ring moderately arched, its lateral extensions narrow and prominent. Axial grooves wide and shallow. Fixed cheeks large, the portions between the posterior branches of the facial sutures and posterior furrows delicately wrinkled; genal lobe large, mitdly convex, subpyriform, and separated from the palpebral lobes by a shallow furrow; genal angles bear spines reaching to the sixth and seventh thoracic somite. Free cheeks small, continuons, depressed, lateral furrows narrow and deep, borders
very gently conrex and diminish in width as they pass around the front of the glabella. Facial sutures follow the courses characteristic of the gemus.

Thurar: greatest width, 57 mm., length, 30 mm ., smooth or microscopically gramular. mildly inflated; axis subspindle-shaped, the fifth and sixth rings being the widest, and from these the width gradually diminishes posteriorly, mildly convex, greatest width 12 mm ., or abont half as wide as the width of one side lobe, bases of rings very slightly swollen. Side lobes very mildly convex, medial furrows of somites wide and deep, the ridges of these, too, are strong, the posterior ones being thickened at the ends abutting the axial grooves, so as to appear mildy tuberculate; their terminals are claw-like.

Pyyidinm: triangular and smonth axis consists of 16 to 20 rings (dependent on the state of maturity), of which the last two or three are faintly ontlined; only mildly convex, its width diminishes gradually posteriorly and terminates with less than one-third of the anterior spread inconspicuonsly, at the border: the six or more anterior rings have their bases gently thickened, those posterior to these very gradually become fainter, and towards the end anmulations frequently seem to ohsolesce; its greatest spread is approximately half as sreat as one side lobe. Side lobes mildly inflated, gradnally sloping from near the axial grooves to the periphery; the pairs of segments number from eleven to fourteen according to the state of maturity reached by the individuals examined, and are very similar in structure to the thoracic somites, their ridges, furrows and articulating sutures crossing the border to the narrow, very gently thickened edge; each preceding pair has an increasing backward bend, so that the last pair is parallel with the axis line. Border wide, similar in convexity with the pleura; inwardly its boundary is indicated by a succession of fine linear ridges in the furrow of each plemron; the under surface is finely and beautifully punctate; behind the axis it is contimed into a short deltoid spine, that is not in any way connected with the prgidial axis, for at the inner boundary of the border the axis vanishes.

Obs.- When describing Hausmamia meridianus (These Proceedings, x., 1895 , Pl. xxxviii., figs. l-: , etc.) Mr. Etheridge, Junr., and myself joined with it the present form, under the impression that the differences in their pygidial mucros, ete., were insufticient reason for their separation, and were perhaps merely sexual variations. That this latter part of our conclusion is erroneous still remains to be shown, but the acquirement of much additional material of both varieties has proven that the differences between them are greater than was at first recognised by us; and that in one fairly important assumption made by us, we were in error, viz., that when the pygidial border was removed and bore the spine with it, the spinal or mucronal impression left was identical in both varieties. Further, a careful revision of a very large number of specimens of the two varieties now in my collection, goes to show that they differ from each other in so many respects, that their specific separation is, from my point of view, justified on scientific grounds. The differences between these two Australian forms seem to be quite as momerous and important, as are those between Dalmanites caudatus and D. longicaudatus, and, therefore, the two local forms present equally strong claims for separate specific distinction. The following is a tabulation of the differences between specimens represented on Plate xv., figs. 1 and 3:-
Tabulation of differences between D. meridianus and D. loompsi in the case of an almost perfect specimen of each, that of D. mpridianus being the nearer to maturity. The measurements are in millimetres in every case.

Parts of the fossils contrasted.	Character of the parts in I). meridimme.	Character of the parts in 1). loomesi.
i. Complete form(r) Outline Length and widts	Elongate oval.	Broadly oval.
(b) Length from front margin to outer edge of tail border ... (c) Greatest width (at the genal angles)	$\begin{aligned} & 93 \mathrm{~mm} \text {. } \\ & 53 \mathrm{~mm} . \end{aligned}$	$8: 3 \mathrm{~mm}$. 57 mm .

Parts of the fossils contrasted.	Character of the parts in D. meridiamu.	Character of the parts in 1). loomesi.
ii. Cephalon-		
(a) Length ...	26.5 mm .	2.5 mm .
(b) Width ...	-3 mm.	57 mm .
(c) Cilabella	No marked	difference.
(d) Fixed cheeks	Slightly smaller.	Slightly larger.
(e) (ienal lobes... ...	Slightly smaller.	Slightly larger.
(f) Extreme width between eyes	30 mm .	39 mm
(g) Length of eye	10 mm .	11 mm .
iii. Thorax-		
(a) Length ...	37 mm .	31 mm .
(b) Wiclth	50 mm .	58 mm ,
(c) Axis $\quad \cdots$	Fairly prominent.	Less prominent.
(d) Bases of axial rings ...	Strongly tuberculate	Very mildy tube
(e) Proportionate width of axis to one side of tobe	14:20.	14:25
iv. Pygidinm-		
(a) Length exclusive of mucro	30 mm .	28 mm .
(h) Wiilth (greatest)	40 m	47 mm
(c) Axial rings...		
(d) Axis ...	Terminally prominent.	Terminally not promi-
(e) Pleural segments (pairs of) ...	10 to 12.	
$\left(f^{\prime}\right)$ Mucro	Continuous with the axis.	Not contimous with axi
(g) Impression of spine left after removal of the border	Long and acicular.	Short, triangnlar.

It appears that the generic term IIausmannia, proposed by Mr. Etheridge, Junr., and Mitchell (These Proceedings, 2nd Ser., x., $1805, \mathrm{p} .502$) to take the place of Dalmanites Barr., ant! which had been previonsly suggested for a subgenus of Dalmanites by Hall and Clarke (Palæont. New York, Vol. lxxxi.), has been rejected by palmontologists; and for this rejection I am willing to admit there is sery good reason, if there were no other than that Dalmanites has been so long in use and generally accepted; acting in compliance with this riew the fossil above described is placed in the Dalmanites group. although it in some minor teatures differs from the genotype D. caudatus Brumn. For
instance, in the present form there is a partial fusion of the tirst, second and third parrs of glabellar lobes by the partial or complete obsolescence of the second and third pairs of glabellar furrows as they approach the axial groores; but this obsolescence has not suthiciently progressed to atfect the pentamerous character of the glabella. It further differs from the genotype by the interruption, centrally, of the first pair of glabellar furrows, which, therefore, do not detach the frontal lobe from the rest of tne glabella, as oceurs in the case of D. caudatus. In these two modifications it shows the tirst steps of the specialisation dereloped so fully in the true Phacops group, but it is remarkable that, in the Australian Palæozoic seas, as far as research has yet revealed, a group represented by the species now under discussion, and by D. (Hausmannia) meridianus E. and M., exhibiting only a small degree of specialisation, should make its sudden appearance, associated with such highly specialised forms as Phacops crossleii E. $\mathbb{\&}$ M., and P. latigenalis E. \& M., and by the very highly specialised form described finther on, unaccompanied by intermediate forms.

Besides the specialisation of the glabella noted above, the pygidia of our members of the Dalmanites branch, show transition towards the pygidial segmentation of the Devonian species of the branch, but do not exceed the segmentation allowed to be the limit for Sihurian species by F. R. Cowper Reed (Geol. Mag., N.S., Dec. v., Vol. ii., 1905 , pp.172-17S and 224-228), viz., $12-16$. In the present species the pleural segments of the pygidium in individuals nearing maturity range from twelve to fourteen, and in D. (Hunsmamia) meridianus ten to twelve. The largest pygidium of the species now described possesses twenty axial rings and fourteen pairs of pleural segments. In D. meridianus these similar divisions are seventeen and twelve respectively for the largest known specimens. Mr. Reed (loc. cit.) refers to the absence of the Silurian forms of Dalmanites from Bohemia, and particularly from the typical Silurian horizon, Barrande's étage E. It is somewhat interesting to note that the lower Trilobite Berls of our Bowning Series, judging by the trilobite fama they have vielded, are homotaxial with the beds forming Barrande's étage E.
and that from these Bowning Beds the Silurian Dalmanites group of trilobites is absent, just as it is from étage \mathbf{E} of the Bohemian rocks. Recent study of the Buwning Series reveals a great break in the sedimentary contimity between the Lower and Middle Trilobite Beds of the Bowning Series, which when properly investigated, may greatly affect our conclusion respecting the age of the Middle Tribobite and succeeding Beds. Until the Family r'hacopidae was dealt with by Etheridge, Jum', and 1 itchell, the trilobite now under review was generally considered to be Dalmanites caulutus, but when the forms are contrasted it is seen they differ very much from each other. As far as I have been able to ascertain, D. perce-ensis Clarke (New York State Mus., Bull. 107,1907 , pp. $157-158$) is one of the most closely related to our species; but it ditters from ours in possessing from fifteen to seventeen pleural segments in the pygidimm, etc. Dedicated to Mr. F. Loomes, of Bowning, who obtained the fine specimen represented on Plate xv., fig. 1.

Loc. And hor:: Near Bowning Railway Station, Parish of Bowning, County Harden; Yass-Burrowa Road, Lime Stone Creek, Parish of Derrengullen, Comnty King, etc. Upper and Middle Trilobite Beds, Bowning and Yass Series, Upper Silurian, and perhaps in the upper zone of its occurrence, Lower Devonian.

On examining my trihbite specimens recently I came across one so different to any other known to me that I have thought it necessary to make of it the type of a new genus.

Order PROPARIA.

Family PHACOPID.

Subfamily PHACOPIN E (Reed).
Cemus Adastocephalum, ${ }^{*}$ g.u.
Gen. chars.-Glabella subrpuatrate, mildly roumded in front, sides straight, only gently converging to the neck ring; lateral glabellar furrows and lobes absent.

The ontstanding features of this new type are the complete
ahsence of ghabllar finrows and lohes: the small convergence of the axial furrows posteriorly, squat condition of the eyes and mild convexity of the sephalon.

> Anstrocephalun thleotypioun, gr et sp.n. (Plate xvi., figs. $]$ and 2).
sp. chars.-Cephalom mildly convex, finely granular, and subsemicireular. Glabella only moderately convex, gently rounted in front, sides rather straight. Neck furrow deep, neck ring moderately arched, bises strongly directed forward, and interrupting the continnity of the neck furow laterally. Limb very narrow. Axial grooves deep, and only converging moderately, posteriorly. Cheeks relatively small, gently convex, gemal and palpebral lobes :ll-defined: posterior furrows narrow, deep. and with the lateral furrows, which are shallow, form almost a semicircle; posterior ridges narrow, strongly directed anteriorly and merging into the depressed lateral borders in such a way as to obliterate the genal angles. Eyes not prominent, rather squat, and they and the palpebral lobes are indistinctly separated from the genal lobes: in the central rows of eye facets there appear to have been four indiriduals in each row.

Obs.-The subject of this description is a headshield, of which the left cheek is much damaged, but the rest is fairly perfect. except that the right eve is somewhat distorted. This form is just such as could reasonably have been expected to make its appearance before the close of, say, the lower Devonian period, and apparently marks the limit of specialisation in the glabellæ of the true Phacops group. Perhaps the nearest relatives of the form now moler consideration are $P h$. logani Hall, Ph. rana Green, and Ph. hylanderi Clark, for in each of these species the first and second pairs of gabellar furrows are obsolesced. It is also worth noting that our highly specialised type occurs associated with $P h$. crossleii and Ph. serratus, which possessed the normal olabellar furrows, thongh faintly defined. The limb or front lobe of the glabella in each of these two speries is obsolete, but in the new form this limb is present, but indistinctly ontlined. For purposes
of comparison and contrast photos of the above two Bowning species will be fomm on the plates illustrating this paper. Other associates are Ceratocephala lomgispinosa Mitchell, Odontoplemra (Aciduspis) jentinsi, and O. ruttei, and a coral which is thought to he Pleurodictymm megastomum MeCoy. The oremrence of the latter fossil, together with many lamellibranchs not yet determined, but which, if not actnally Devonian species, are closely allied to them, inlicates that it is more than likely that the upper beds of the Bowning stratified rocks will prove to belong to the lower Devonian horizon, althonglı up to the present Mr. Etheridge and myself have considered these beds to be U'pper Silurian or passage beds between these two formations.

Loc. and hor.-Near the railway station, Bowning township. Parish of Bowning, Comnty Harden, N.S.W. Upper Trilohite Bed. Probably Lower Devonian.
(Kote.-In my paper "The Carhoniferons Trilobites of Australia" (Proe. Linn. Soc., N.S.Wales, xliii., 1918, pp. 437-494, Pls. 4(6-5.3), a few omissions and errors oceurred. These I wish to have the privilege to correct.)

Explanation of Plates.
Plate xliii., fig.9.-Read-Medial portion of a cephalon much weathered (Coll. Queensland Mus., No. 767).

Plate xlix, figs. 1, 2, 3, 4, and 6 are photos of wax impressions of casts; fig. 6 is the counterpart of fig. 5 . Figs. 3 and 4 are from Malchi Creek, near Rockhampton, Queensland.

Plate lii., fig. 2 represents specimen F1031 and not F1017 of the Queensland Geol. Surv.

Plate liii., fig 9, represents Pl. vii., fig.11, Geol. and Pal. Queensland and New Guinea.

Page 465, last line-for figs.n-fi, reard fig, 5.

EXPLANATION OF PLATES.
 Plate xr .
 Dalmanites loomesi Mitchell.

Fig. 1.-An almost perfect individual. sliglttly enlarged
Fig.2.-A fine pygidium showing abont 20 rings in the axis and 14 seg. ments in the pleura, and the absence of connection hetween the axis anfl tail spine, etc. The pygidimm belonged to an individual that had a length approximately of four and a half inches. $\left(\times \frac{6}{3}\right)$. (Coll. Mitchell).

Haиsmamia (Dalmanites) meridianus E. \& M.
Fig.3. -The photo of the original type specimen of Hunsmotnia meriflicturs E. \& M1.; contrasting this with fig. 1 of this llate, the differences between the two species will be very evident. ($\times \frac{1}{2}$ nearly).
Fig.t.-A pygidimm showing 12 plemal segments and the extension of the axis into the spine. $\left(\times \frac{5}{2}\right)$. (Coll. Mitchell).

Phacops crossleii E. \& II.
Fig.j. - An almost perfect specimen for comparison and contrast with Adcastocephahm teleotypicum. (\times abont 2). (Coll. Witchell). Phrcops serrutus E, \& M.
Fig.6. - A very fine specimen of a young individual given to compare and contrast with Adcstocephulum teleotypirum. (\times about 2). (Coll. Witchell).

Plate xvi.
Adustocephulum teleotypicum Mitchell.
Fig. 1. -Photo of the only portion of the glabella known; shows the generie and specific features fairly well. (\times abont 2). (Coll. Mitchell).
Fig.2.-The same with outline restored.
Dulmanites loomesi Mitchell.
Fig.3.-Photo representing portion of a thorax, and complete pygidinm, except for the removal of a part of the border. Shows the imperceptible mergence of the thoracic axis into the pygidial axis, etc. (Coll. Mitchell).
Fig.t.-Another photo of the same specimen shown on Plate xy., fig. 1, with the defective part restored. (Reduced). (Coll. Mitchell'.
Fig. $)^{\prime}$.-Side riew of an eye; (\times about 3). (Coll. Mitchell). Haнsmannia (Dulmraites) meridianns.
Fig. 1b. - Photo from a squeeze of the comnterpart of a -pygidium showing the long acicular spine or telson; $(\times 2)$. (Coll. Mitchell).
Fig. T. - Pygidium of a mature individual showing twelve pleural segments and their characters clearly.

